Source code for grb.model.torch.appnp

"""Torch module for APPNP."""
import torch
import torch.nn as nn
import torch.nn.functional as F

from grb.utils.normalize import GCNAdjNorm


[docs]class APPNP(nn.Module): r""" Description ----------- Approximated Personalized Propagation of Neural Predictions (`APPNP <https://arxiv.org/abs/1810.05997>`__) Parameters ---------- in_features : int Dimension of input features. out_features : int Dimension of output features. hidden_features : int or list of int Dimension of hidden features. List if multi-layer. n_layers : int Number of layers. layer_norm : bool, optional Whether to use layer normalization. Default: ``False``. activation : func of torch.nn.functional, optional Activation function. Default: ``torch.nn.functional.relu``. feat_norm : str, optional Type of features normalization, choose from ["arctan", "tanh", None]. Default: ``None``. adj_norm_func : func of utils.normalize, optional Function that normalizes adjacency matrix. Default: ``GCNAdjNorm``. edge_drop : float, optional Rate of edge drop. alpha : float, optional Hyper-parameter, refer to original paper. Default: ``0.01``. k : int, optional Hyper-parameter, refer to original paper. Default: ``10``. dropout : float, optional Dropout rate during training. Default: ``0.0``. """ def __init__(self, in_features, out_features, hidden_features, n_layers, layer_norm=False, activation=F.relu, edge_drop=0.0, alpha=0.01, k=10, feat_norm=None, adj_norm_func=GCNAdjNorm, dropout=0.0): super(APPNP, self).__init__() self.in_features = in_features self.out_features = out_features self.feat_norm = feat_norm self.adj_norm_func = adj_norm_func if type(hidden_features) is int: hidden_features = [hidden_features] * (n_layers - 1) elif type(hidden_features) is list or type(hidden_features) is tuple: assert len(hidden_features) == (n_layers - 1), "Incompatible sizes between hidden_features and n_layers." n_features = [in_features] + hidden_features + [out_features] self.layers = nn.ModuleList() for i in range(n_layers): if layer_norm: self.layers.append(nn.LayerNorm(n_features[i])) self.layers.append(nn.Linear(n_features[i], n_features[i + 1])) self.alpha = alpha self.k = k self.activation = activation if edge_drop > 0.0: self.edge_dropout = SparseEdgeDrop(edge_drop) else: self.edge_dropout = None if dropout > 0.0: self.dropout = nn.Dropout(dropout) else: self.dropout = None @property def model_type(self): """Indicate type of implementation.""" return "torch" @property def model_name(self): return "appnp"
[docs] def reset_parameters(self): """Reset parameters.""" for layer in self.layers: layer.reset_parameters()
[docs] def forward(self, x, adj): r""" Parameters ---------- x : torch.Tensor Tensor of input features. adj : torch.SparseTensor Sparse tensor of adjacency matrix. Returns ------- x : torch.Tensor Output of model (logits without activation). """ for layer in self.layers: if isinstance(layer, nn.LayerNorm): x = layer(x) else: x = layer(x) x = self.activation(x) if self.dropout is not None: x = self.dropout(x) for i in range(self.k): if self.edge_dropout is not None and self.training: adj = self.edge_dropout(adj) x = (1 - self.alpha) * torch.spmm(adj, x) + self.alpha * x return x
[docs]class SparseEdgeDrop(nn.Module): r""" Description ----------- Sparse implementation of edge drop. Parameters ---------- edge_drop : float Rate of edge drop. """ def __init__(self, edge_drop): super(SparseEdgeDrop, self).__init__() self.edge_drop = edge_drop
[docs] def forward(self, adj): """Sparse edge drop""" mask = ((torch.rand(adj._values().size()) + self.edge_drop) > 1.0) rc = adj._indices() val = adj._values().clone() val[mask] = 0.0 return torch.sparse.FloatTensor(rc, val)