Source code for grb.model.torch.gin

"""Torch module for GIN."""
import torch
import torch.nn as nn
import torch.nn.functional as F


[docs]class GIN(nn.Module): r""" Description ----------- Graph Isomorphism Network (`GIN <https://arxiv.org/abs/1810.00826>`__) Parameters ---------- in_features : int Dimension of input features. out_features : int Dimension of output features. hidden_features : int or list of int Dimension of hidden features. List if multi-layer. n_layers : int Number of layers. n_mlp_layers : int Number of layers. layer_norm : bool, optional Whether to use layer normalization. Default: ``False``. batch_norm : bool, optional Whether to apply batch normalization. Default: ``True``. eps : float, optional Hyper-parameter, refer to original paper. Default: ``0.0``. activation : func of torch.nn.functional, optional Activation function. Default: ``torch.nn.functional.relu``. feat_norm : str, optional Type of features normalization, choose from ["arctan", "tanh", None]. Default: ``None``. adj_norm_func : func of utils.normalize, optional Function that normalizes adjacency matrix. Default: ``None``. dropout : float, optional Rate of dropout. Default: ``0.0``. """ def __init__(self, in_features, out_features, hidden_features, n_layers, n_mlp_layers=2, activation=F.relu, layer_norm=False, batch_norm=True, eps=0.0, feat_norm=None, adj_norm_func=None, dropout=0.0): super(GIN, self).__init__() self.in_features = in_features self.out_features = out_features self.feat_norm = feat_norm self.adj_norm_func = adj_norm_func self.activation = activation if type(hidden_features) is int: hidden_features = [hidden_features] * (n_layers - 1) elif type(hidden_features) is list or type(hidden_features) is tuple: assert len(hidden_features) == (n_layers - 1), "Incompatible sizes between hidden_features and n_layers." n_features = [in_features] + hidden_features + [out_features] self.layers = nn.ModuleList() for i in range(n_layers - 1): if layer_norm: self.layers.append(nn.LayerNorm(n_features[i])) self.layers.append(GINConv(in_features=n_features[i], out_features=n_features[i + 1], batch_norm=batch_norm, eps=eps, activation=activation, dropout=dropout)) self.mlp_layers = nn.ModuleList() for i in range(n_mlp_layers): if i == n_mlp_layers - 1: self.mlp_layers.append(nn.Linear(hidden_features[-1], out_features)) else: self.mlp_layers.append(nn.Linear(hidden_features[-1], hidden_features[-1])) if dropout > 0.0: self.dropout = nn.Dropout(dropout) else: self.dropout = None self.reset_parameters() @property def model_type(self): """Indicate type of implementation.""" return "torch" @property def model_name(self): return "gin"
[docs] def reset_parameters(self): """Reset parameters.""" for layer in self.layers: layer.reset_parameters() for layer in self.mlp_layers: layer.reset_parameters()
[docs] def forward(self, x, adj): r""" Parameters ---------- x : torch.Tensor Tensor of input features. adj : torch.SparseTensor Sparse tensor of adjacency matrix. Returns ------- x : torch.Tensor Output of model (logits without activation). """ for layer in self.layers: if isinstance(layer, nn.LayerNorm): x = layer(x) else: x = layer(x, adj) for i, layer in enumerate(self.mlp_layers): x = layer(x) if i != len(self.mlp_layers) - 1: x = self.activation(x) if self.dropout is not None: x = self.dropout(x) return x
[docs]class GINConv(nn.Module): r""" Description ----------- GIN convolutional layer. Parameters ---------- in_features : int Dimension of input features. out_features : int Dimension of output features. activation : func of torch.nn.functional, optional Activation function. Default: ``None``. eps : float, optional Hyper-parameter, refer to original paper. Default: ``0.0``. batch_norm : bool, optional Whether to apply batch normalization. Default: ``True``. dropout : float, optional Rate of dropout. Default: ``0.0``. """ def __init__(self, in_features, out_features, activation=F.relu, eps=0.0, batch_norm=True, dropout=0.0): super(GINConv, self).__init__() self.linear1 = nn.Linear(in_features, out_features) self.linear2 = nn.Linear(out_features, out_features) self.activation = activation self.eps = torch.nn.Parameter(torch.Tensor([eps])) self.batch_norm = batch_norm if batch_norm: self.norm = nn.BatchNorm1d(out_features) if dropout > 0.0: self.dropout = nn.Dropout(dropout) else: self.dropout = None self.reset_parameters()
[docs] def reset_parameters(self): """Reset parameters.""" if self.activation == F.leaky_relu: gain = nn.init.calculate_gain('leaky_relu') else: gain = nn.init.calculate_gain('relu') nn.init.xavier_normal_(self.linear1.weight, gain=gain) nn.init.xavier_normal_(self.linear2.weight, gain=gain)
[docs] def forward(self, x, adj): r""" Parameters ---------- x : torch.Tensor Tensor of input features. adj : torch.SparseTensor Sparse tensor of adjacency matrix. Returns ------- x : torch.Tensor Output of layer. """ y = torch.spmm(adj, x) x = y + (1 + self.eps) * x x = self.linear1(x) if self.activation is not None: x = self.activation(x) x = self.linear2(x) if self.batch_norm: x = self.norm(x) if self.activation is not None: x = self.activation(x) if self.dropout is not None: x = self.dropout(x) return x