Source code for grb.model.torch.graphsage

"""Torch module for GraphSAGE."""
import torch
import torch.nn as nn
import torch.nn.functional as F

from grb.utils.normalize import SAGEAdjNorm


[docs]class GraphSAGE(nn.Module): r""" Description ----------- Inductive Representation Learning on Large Graphs (`GraphSAGE <https://arxiv.org/abs/1706.02216>`__) Parameters ---------- in_features : int Dimension of input features. out_features : int Dimension of output features. n_layers : int Number of layers. hidden_features : int or list of int Dimension of hidden features. List if multi-layer. layer_norm : bool, optional Whether to use layer normalization. Default: ``False``. activation : func of torch.nn.functional, optional Activation function. Default: ``torch.nn.functional.relu``. feat_norm : str, optional Type of features normalization, choose from ["arctan", "tanh", None]. Default: ``None``. adj_norm_func : func of utils.normalize, optional Function that normalizes adjacency matrix. Default: ``SAGEAdjNorm``. mu : float, optional Hyper-parameter, refer to original paper. Default: ``2.0``. dropout : float, optional Rate of dropout. Default: ``0.0``. """ def __init__(self, in_features, out_features, hidden_features, n_layers, activation=F.relu, layer_norm=False, feat_norm=None, adj_norm_func=SAGEAdjNorm, mu=2.0, dropout=0.0): super(GraphSAGE, self).__init__() self.in_features = in_features self.out_features = out_features self.feat_norm = feat_norm self.adj_norm_func = adj_norm_func if type(hidden_features) is int: hidden_features = [hidden_features] * (n_layers - 1) elif type(hidden_features) is list or type(hidden_features) is tuple: assert len(hidden_features) == (n_layers - 1), "Incompatible sizes between hidden_features and n_layers." n_features = [in_features] + hidden_features + [out_features] self.layers = nn.ModuleList() for i in range(n_layers): if layer_norm: self.layers.append(nn.LayerNorm(n_features[i])) self.layers.append(SAGEConv(in_features=n_features[i], pool_features=n_features[i], out_features=n_features[i + 1], activation=activation if i != n_layers - 1 else None, mu=mu, dropout=dropout if i != n_layers - 1 else 0.0)) self.reset_parameters() @property def model_type(self): """Indicate type of implementation.""" return "torch" @property def model_name(self): return "graphsage"
[docs] def reset_parameters(self): """Reset parameters.""" for layer in self.layers: layer.reset_parameters()
[docs] def forward(self, x, adj): r""" Parameters ---------- x : torch.Tensor Tensor of input features. adj : torch.SparseTensor Sparse tensor of adjacency matrix. Returns ------- x : torch.Tensor Output of model (logits without activation). """ for layer in self.layers: if isinstance(layer, nn.LayerNorm): x = layer(x) else: x = F.normalize(x, dim=1) x = layer(x, adj) return x
[docs]class SAGEConv(nn.Module): r""" Description ----------- SAGE convolutional layer. Parameters ---------- in_features : int Dimension of input features. pool_features : int Dimension of pooling features. out_features : int Dimension of output features. activation : func of torch.nn.functional, optional Activation function. Default: ``None``. dropout : float, optional Rate of dropout. Default: ``0.0``. mu : float, optional Hyper-parameter, refer to original paper. Default: ``2.0``. """ def __init__(self, in_features, pool_features, out_features, activation=None, mu=2.0, dropout=0.0): super(SAGEConv, self).__init__() self.pool_layer = nn.Linear(in_features, pool_features) self.linear1 = nn.Linear(pool_features, out_features) self.linear2 = nn.Linear(pool_features, out_features) self.activation = activation self.mu = mu if dropout > 0.0: self.dropout = nn.Dropout(dropout) else: self.dropout = None self.reset_parameters()
[docs] def reset_parameters(self): """Reset parameters.""" if self.activation == F.leaky_relu: gain = nn.init.calculate_gain('leaky_relu') else: gain = nn.init.calculate_gain('relu') nn.init.xavier_normal_(self.linear1.weight, gain=gain) nn.init.xavier_normal_(self.linear2.weight, gain=gain) nn.init.xavier_normal_(self.pool_layer.weight, gain=gain)
[docs] def forward(self, x, adj): r""" Parameters ---------- x : torch.Tensor Tensor of input features. adj : torch.SparseTensor Sparse tensor of adjacency matrix. Returns ------- x : torch.Tensor Output of layer. """ x = F.relu(self.pool_layer(x)) x_ = x ** self.mu x_ = torch.spmm(adj, x_) ** (1 / self.mu) # In original model this is actually max-pool, but **10/**0.1 result in gradient explosion. # However we can still achieve similar performance using 2-norm. x = self.linear1(x) x_ = self.linear2(x_) x = x + x_ if self.activation is not None: x = self.activation(x) if self.dropout is not None: x = self.dropout(x) return x